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Abstract

Quantitative models of magnetization transfer (MT) allow the estimation of physical properties of tissue which are thought to reflect
myelination, and are therefore likely to be useful for clinical application. Although a model describing a two-pool system under contin-
uous wave-saturation has been available for two decades, generalizing such a model to pulsed MT, and therefore to in vivo applications,
is not straightforward, and only recently have a range of equations predicting the outcome of pulsed MT experiments been proposed.
These solutions of the 2-pool model are based on differing assumptions and involve differing degrees of complexity, so their individual
advantages and limitations are not always obvious. This paper is concerned with the comparison of three differing signal equations. After
reviewing the theory behind each of them, their accuracy and precision is investigated using numerical simulations under variable exper-
imental conditions such as degree of T1-weighting of the acquisition sequence and SNR, and the consistency of numerical results is tested
using in vivo data. We show that while in conditions of minimal T1-weighting, high SNR, and large duty cycle the solutions of the three
equations are consistent, they have a different tolerance to deviations from the basic assumptions behind their development, which
should be taken into account when designing a quantitative MT protocol.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The Magnetization Transfer (MT) effect is based on the
exchange of magnetization occurring between groups of
spins characterized by different molecular environments.
In biological tissues, two or more ‘‘pools’’ of protons can
be identified: those in free water (the free, or liquid, pool)
and those bound to large molecules (referred to as
restricted, semisolid, or macromolecular, pool). The latter
protons are characterized by a very short transverse relax-
ation time (T2) and therefore do not directly contribute to
signal intensity in conventional magnetic resonance (MR)
images. Nevertheless, it is possible to sensitise an MR
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experiment to the magnetic resonance characteristics of
macromolecular protons by exposing the sample to radio-
frequency (RF) energy several kilohertz away from the
Larmor frequency. Protons in free water are relatively
insensitive to such irradiation, but it can cause saturation
of protons in the semisolid pool which, due to their short
T2 and correspondingly large line width, are responsive
to irradiation at these frequencies. In these conditions,
any exchange of magnetization between pools results in a
decreased intensity of the observed MR signal.

From a quantitative MT model based on the exchange
between two pools Henkelman et al. [1] derived a signal
equation for the continuous wave (CW) case, in which
RF irradiation of particular (constant) amplitude and sev-
eral seconds duration is used to saturate the macromolecu-
lar pool. The parameters characterizing the two pools in
the model are potentially interesting to measure, and they
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can be estimated by fitting Henkelman’s equation to a set
of MR measurements obtained in the presence of MT
pulses with a suitable set of amplitudes x1 and offset fre-
quencies Df.

As CW irradiation is impractical and generally not
available for in vivo imaging experiments, in vivo MT-
weighted MRI is generally obtained using the so-called
pulsed MT acquisition, in which the long period of satura-
tion is replaced by a much shorter irradiation pulse (typi-
cally applied just before each excitation pulse) along with
intervals without irradiation (during which data is col-
lected). For data from this type of acquisition, Henkel-
man’s equation must be modified to allow for the short
duration of the saturation pulses relative to T1 [2]. A num-
ber of such modified signal equations for pulsed MT, all
based on the same original two-pool model, have been
developed [3–5]. While the numerical results published so
far suggest reasonable consistency across the solutions pre-
dicted by these equations, no direct comparison is avail-
able, and the differing conventions and symbols used
mean that evaluating discrepancies and similarities between
them is not straightforward.

This paper is concerned with the comparison of three of
these signal equations—two derived by Sled and Pike [3,6],
plus that of Ramani et al. [5]. Ramani et al. used a CW
power equivalent approximation (CWPE) [5] where the
pulse is simply replaced by a CW irradiation with the mean
square amplitude that would give the same power over the
interval between MT pulses. By means of the CWPE
approximation, Henkelman’s steady state model can be
straightforwardly applied to the in vivo MRI case, neglect-
ing the imaging elements of the pulse sequence. Due its
steady state nature, the implicit assumption within the
equation is that the relative signal intensity in data
obtained with different MT-weightings only depends on
the characteristics of the MT pulse, and that T1 and T2

relaxations equally affect all measurements.
As Ramani’s equation does not explicitly model the

effects of the excitation pulses and TR, its description of
the MT-weighted signal is valid only when the degree of
T1-weighting in the acquisition sequence is minimal. As it
effectively assumes that the MT pulse is applied continu-
ously, another parameter likely to affect the accuracy of
Ramani’s equation is the duty cycle, i.e. the duration of
the MT pulse relative to the repetition period, whose effect
has never formally been investigated. Sled and Pike [6] pro-
pose an alternative equation which can be fitted directly to
the measured signal. Their solution is derived by approxi-
mating the pulse sequence as a series of periods of free pre-
cession, CW irradiation and instantaneous saturation of
the free pool. It has the advantage of incorporating the
effect of the excitation RF pulses, and also makes it possi-
ble to account for saturation effects of the excitation.
Together with this solution, the authors propose also a sim-
pler variant which neglects free precession, thus assuming a
succession of instantaneous saturation of the free pool and
CW irradiation of the macromolecular pool for the total
duration of the interval between pulses. Both equations
presented by Sled and Pike for in vivo applications require
the numerical evaluation of ordinary differential equations
(when modeling the rate of saturation of the macromolec-
ular pool with a super-Lorentzian, see next section), at least
for the estimation of the effect of the MT pulse on the free
pool, and they are therefore computationally intensive.
Ramani’s solution has the advantage of being simpler, at
the price of its inability to account for the effects of the
excitation pulses. A recent paper presented an evaluation
of these signal equation, validated using animal data [7].
Here we first review the theory behind them and then use
numerical simulations to extend the range of experimental
conditions under which each can be tested (investigating
how duty cycle, saturation effects of the excitation and
noise affect the MT parameters fitted by each of them).
We also perform a statistical comparison between MT
parameters estimated using each signal equation in healthy
brain tissue from in vivo data.
2. Theory

2.1. Coupled Bloch equations

Assuming that the MT effect can be modeled using a
liquid pool (A) and a macromolecular pool (B), the magne-
tization of either pool can be described by its longitudinal
component ðMA

z ;M
B
z Þ and its transverse components

ðMA
x ;M

A
y ;M

B
x ;M

B
y Þ. The exchange between pools associated

with the transverse components of magnetization can be
considered negligible due to the extremely short T2 associ-
ated with the macromolecular pool [2,6]. The coupled Bloch
equations for the system can thus be written as follows:

dMA
z
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0 �MA
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In Eqs. (1)–(4), T A
2 represents the transverse relaxation

time of the liquid pool, MA
0 and MB

0 are the fully relaxed val-
ues of magnetization associated with the two pools
(assumed dimensionless), RA and RB are their longitudinal
relaxation rates, and R is the exchange rate constant. Df

represents the frequency offset of the pulse, while x1(t) is
the time dependent amplitude of the pulse expressed in
rad s�1 (i.e. the angular frequency of precession induced
by the pulse). RRFB(Df, x1(t)) is the rate of saturation of
longitudinal magnetization in pool B due to the irradiation
by the amplitude defined by Df and x1(t), and depends on
the transverse relaxation time of the macromolecular pool,
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T B
2 . Li et al. [8] show that, in brain tissue, the specra asso-

ciated with macromolecular pool are better modeled by a
super-Lorentzian, (with x2

1 being the average power of
the MT pulse), yielding:

RRFBðDf ;x1Þ

¼ x2
1

ffiffiffiffiffiffi
2p
p

T B
2

Z 1

0

1

j3u2 � 1j exp �2
2pDfT B

2

3u2 � 1

� �2
 !

du

" #

ð5Þ

and we adopt this model here.
We remark here that this notation is not universal. Some

authors label the A and B pools as ‘F’ and ‘R’, respectively
[6], or ‘f’ and ‘m’ [9,10] and use the symbol W instead of
RRFB [6]. The pseudo first-order exchange rates,
RMB

0 ðA! BÞ and RMA
0 ðB! AÞ, are often referred to as kf

(or simply k) and kr.
2.2. Sled and Pike’s RP signal equation

Assuming that the pulse sequence consists of an MT
pulse followed by an excitation pulse and by a period of
recovery, Sled and Pike [6] decompose it into a series of
periods where Eqs. (1)–(4) have exact or approximate solu-
tions. These solutions can then be concatenated by impos-
ing the appropriate initial conditions, leading to an
expression for the measured signal which is less expensive
to compute than numerically integrating the full set of dif-
ferential equations. The effect of an MT pulse on the mac-
romolecular pool is modeled as a rectangular pulse whose
width is equal to the full width at half maximum (sRP) of
the curve obtained by squaring the instantaneous ampli-
tude of the MT pulse throughout its duration, and whose
amplitude is such that the pulses have equivalent average
power (rectangular pulse, or RP, approximation). The
effect of the pulse on the liquid pool is modeled as an
instantaneous fractional saturation of the longitudinal
magnetization. Such fractional saturation (S1A) is esti-
mated by solving (numerically) the system of Eqs. (1), (3)
and (4) when R and RA are set to 0.

In matrix form [6], considering the longitudinal compo-
nents of magnetization only

MzðtÞ ¼
MA

z ðtÞ
MB

z ðtÞ

" #
: ð6Þ

Instantaneous saturation of the free pool, caused by both
MT and excitation pulses, is simply described by multiply-
ing Mz by the matrix S (where h is the excitation flip angle)
SIðx1;Df Þ ¼
ðE1 � 1ÞðE2 � 1Þðk2 � k1ÞS1AM

ðE1 � 1ÞðS1AE2 cos h� 1Þðk2 � k1Þ þ ðS1A cos h� 1
S ¼
S1A cos h 0

0 1

� �
: ð7Þ

The state of the magnetization after a period t1 (assuming
starting time = t0) is given by the solution to the system of
Eqs. (1) and (2) for either free precession [FP] or CW:

Mzðt0 þ t1Þ ¼ expfACW t1gMzðt0Þ
þ ½I� expfACW t1g�A�1

CW BM0 ð8Þ
Mzðt0 þ t1Þ ¼ expfAFP t1gMzðt0Þ
þ ½I� expfAFP t1g�A�1

FP BM0; ð9Þ

with
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�RA � RMB

0 RMA
0

RMB
0 �RB � RMA

0 � RRFB

" #
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0 RMA
0

RMB
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0

" #

B ¼
�RA 0

0 �RB

� �
:

According to Sled and Pike’s RP approximation, over
the time interval T between application of MT pulses (typ-
ically the time required to excite and collect data for a single
k-space line of a single image slice), Mz undergoes instanta-
neous saturation, CW irradiation for a period sRP/2, FP for
a period (T � sRP), and CW for another sRP/2. After includ-
ing all thee steps, we can impose the equality

MzðT Þ ¼Mzð0Þ; ð10Þ
and solve for Mz yielding an equation for the longitudinal
components of magnetization. Recalling that the signal ob-
served at readout is

SIðx1;Df Þ ¼ MA
z ðTRÞS1A sin h; ð11Þ

(where the repetition time TR may be PT depending of the
details of the image acquisition) it is thus possible to model
the MT-weighed signal. The solution to Eq. (10) can be
easily computed in matrix form, and we adopt this proce-
dure for all the following experiments.

2.3. Sled and Pike’s CW signal equation

A simpler expression is presented in the same paper [6],
where the effect of the MT pulse on the macromolecular
pool is described by a CW irradiation of duration T. In this
case, over the same period T, Mz undergoes instantaneous
saturation, and CW irradiation (of the restricted pool only)
for a period T. Following the same procedure as described
above, a more manageable analytic expression can be
derived in this case:
A
z;CW sin h

ÞðE2 � E1Þðk2 � RA � RMB
0 Þ
: ð12Þ
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Here MA
z;CW is the steady state solution obtained by Henk-

elman et al. [1] for CW irradiation of the restricted pool of
duration T:

MA
z;CW ¼

M0 RARMA
0 þ RARB þ RBRMB

0 þ RRFBRA

� �
RARMA

0 þ RARB þ RBRMB
0 þ RRFBRA þ RRFBRMB

0

;

ð13Þ

which is equivalent to the first element of the vector
Mz;CW ¼ A�1

CW BM0. In Eq. (12),
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We note here that for the specific case of the 3D spoilt
gradient echo acquisition described in this paper (see Sec-
tion 3) T = TR.

Sled and Pike also introduce, as a useful index which is
believed to correlate with myelin content, the relative size
of the macromolecular pool [6] F, defined as

F ¼ MB
0

MA
0

: ð15Þ

F can be fitted directly, by substituting RMA
0 ¼

RMB
0

F in Eq.
(13) and previous. More details on these signal equations
can be found in [3,6,11].
2.4. Ramani’s signal equation

Henkelman’s solution [1] for the CW case is obtained by
solving Eqs. (1)–(4) in the steady state, i.e. setting the deriv-
atives on the left hand side to zero. Ramani et al. [5] adopt
the same approach in the pulsed MT case, simply replacing
the MT pulse with a CW irradiation with the same mean
square amplitude

x1CWPE ¼ c
ffiffiffiffiffiffiffiffiffi
P SAT

p
; ð16Þ

where PSAT is the mean square saturating field.
In order to ease the comparison between the three signal

equations, we break with the terminology of the original
paper [5], where the macromolecular fraction f (with
f = F/(F + 1)) was used, and instead rewrite the Henkel-
man–Ramani expression using F and RMB

0 to obtain
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ð17Þ
where M0 is the signal with no MT-weighting (again
assuming a constant of proportionality of c = 1). Note that
while in the equations presented in the previous section, M0

is the equilibrium magnetization, in Eq. (17) it simply rep-
resents the partially recovered magnetization available
prior to the application of an MT pulse.

2.5. Fitting

All the equations are written in terms of seven parame-
ters: M0;RA;RB;RMB

0 ; F ; T
A
2 and T B

2 , but these cannot be
uniquely determined [1,12]. Constraints are imposed by
measuring the observed longitudinal relaxation rate of
the sample, RAobs(=1/T1obs) independently, linked to RA

by Henkelman et al. [1]

RA ¼ RAobs �
RMB

0 ðRB � RAobsÞ
RB � RAobs þ

RMB
0

F

: ð18Þ

A further issue is that dependence of S(x1, Df) on RB is
weak, making fitting of this parameter unstable. Since the
estimates of the other parameters are largely insensitive
to its value, RB is usually kept fixed at 1 s�1 [1,5,6]. This
reduces the number of free parameters to 5, which can be
estimated by fitting the equation to five or more measure-
ments with different combinations of x1(t) and Df.

3. Materials and methods

3.1. Numerical simulations

In order to compare the three signal equations, and to
highlight their shortcomings, we need to test their perfor-
mance against data corresponding to a known set of
parameters. The easiest way to obtain such data is to syn-
thetically produce them, using numerical simulations.

We consider here the case of an MT-weighted spoiled
gradient echo acquisition, where off-resonance saturation
is achieved using Gaussian pulses (of duration sSAT)
applied once every TR (just prior to RF excitation),
while on-resonance excitation is obtained using short 5-
lobe sinc pulses (in the presence of a ‘slab selection’
gradient).

Eqs. (1)–(4) can be solved numerically to predict the lon-
gitudinal magnetization at the end of the MT pulse (i.e. just
before the excitation pulse), MA

z ðsSAT Þ. Since the measured
signal intensity is proportional to the transverse magnetiza-
tion at readout (if we neglect T �2 decay):

SI / MxyðreadoutÞ ¼ MzðsSAT Þ sin h: ð19Þ

The MT pulse is characterized by its maximum amplitude,
B1SAT, MAX, by its duration, sSAT, and by the standard
deviation of the Gaussian envelope, r. The excitation pulse
is characterized by its maximum amplitude, B1EXC, MAX, by
its duration, sEXC, and by its bandwidth, BW. Both pulses
can be described by their equivalent on-resonance flip an-
gle, given by the integral over pulse duration of x1(t).
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Additionally, we assume the excitation pulse to have no ef-
fect on pool B. The measured signal intensity can be esti-
mated by calculating the solution of Eq. (19) as Mz tends
towards a steady state, i.e. after solving Eqs. (1)–(4) for sev-
eral TRs, until the difference between Mz(TRn + sSAT) and
Mz(TRn+1 + sSAT) is less than 0.01% of Mz(TRn + sSAT).

We simulate four experiments to probe the effects of dif-
ferent parameters on the fits. Firstly we aim to identify any
systematic biases in the three signal equations with respect
to variable experimental conditions, by fitting them to
noise-free simulated data (Experiments 1–3); next we inves-
tigate their robustness in the presence of noise, by using a
Monte Carlo approach (Experiment 4). The simulated sig-
nal is computed by using a Runge–Kutta ordinary differen-
tial equation (ODE) integrator with adaptive step-size
control [13]. Spoiling of the transverse magnetization is
simulated by setting the transverse components of magne-
tization equal to zero before the occurrence of every MT
pulse. All experiments use the same set of MT parameters
ðRA;RB; T A

2 ; T
B
2 ; F ;RMB

0 Þ, chosen to be similar to values
measured previously in white matter [14,15] and shown in
Table 1 as ‘test set’. All also use the same excitation pulse
parameters (sEXC = 3.2 ms, and BW = 2.5 kHz), but other
values differ:

Experiment 1: In the first simulation, we investigate the
accuracy of Ramani’s, Sled and Pike’s CW and Sled and
Pike’s RP signal equations as a function of duty cycle, by
simulating 5 MT experiments using an excitation flip angle
of 5�, TR = 30 ms, and varying sSAT between 5 and 25 ms,
in steps of 5 ms. The full width at half maximum (FWHM)
of the pulses varies accordingly between 2.29 (r = 0.97)
and 11.45 ms (r = 4.86 ms), in steps of 2.29 ms. Each sim-
ulated set consists of 60 points, generated using only two
fixed values of x1CWPE (250.2 and 850.7 rad s�1) (and thus
different MT flip angles for each value of sSAT), following
Sled and Pike [6,15], and 30 values of Df per flip angle.
The offset frequency ranges from 400 to 30,000 Hz, sam-
pled at regular interval on a logarithmic scale. The three
equations are fitted to the synthetic datasets using the
Levenberg–Marquardt method, as implemented in Numer-
ical Recipes [13], to yield the estimated parameters. Numer-
ical derivatives are computed where an analytical
Table 1
MT parameter values used to create synthetic data (TEST SET) and results o
cycle = 50%) using all signal equations

No. sets RMB
0 ½s�1� F

Test set 3.10 0.107

Ramani 1 2.98 0.100
2 2.98 0.104

Sled and Pike CW 1 3.17 0.108
2 3.20 0.108

Sled and Pike RP 1 3.59 0.107
2 3.65 0.107

The results obtained when using a single set of 60 points (same TR and sSAT) a
and sSAT as the single set, and 20 points with longer TR and sSAT).
expression is unavailable. The test set of parameters (see
Table 1) are used to provide the initial parameter estimates,
and RAobs is obtained by solving Eq. (18) with respect to
this quantity. The same ODE integrator used to compute
the simulations is used to estimate S1A at every step for
Eqs. (7), (11) and (12).

Experiment 2: Secondly, we explore the effects of satura-
tion of the excitation on the estimated parameters, simulat-
ing the outcome of six MT experiments using regularly
spaced excitation flip angles ranging from 5� to 20� and
TR = 30 ms. We fix sSAT = 15 ms and keep the other
parameters as in the first experiment. With the exception
of the excitation flip angle, the input parameters are identi-
cal for all six cases.

In order to check that our results are not specific to the
choice of the sampling scheme, we repeat Experiments 1
and 2 with an alternative sampling scheme generated using
four fixed values of x1CWPE (250.2, 450.4, 650.5 and 850.7
rad s�1) and 15 values of Df per flip angle.

Experiment 3: As Sled and Pike used two sequences with
two different MT pulse durations and two TRs to constrain
the estimate of RM0B, we create a synthetic dataset formed
by two ‘‘sequences’’ (40 MT points with TR = 30 ms,
sSAT = 15 ms, h = 5�, 2 MT flip angles equal to 250� and
850�, respectively; and 20 with TR = 45 ms, sSAT = 20 ms,
h = 6�, 2 MT flip angles equal to 353� and 1202�, respec-
tively). We then compare the accuracy of the MT parame-
ters estimated fitting the three signal equations to such a
dataset and to the ‘‘single sequence’’ dataset obtained in
Experiments 2 when fixing sSAT = 15 ms and h = 5�.

Experiment 4: Finally, in order to investigate the sensi-
tivity to noise, we add complex noise with zero mean
Gaussian real and imaginary parts to the dataset obtained
in Experiment 2 for sSAT = 15 ms and h = 5�. We then take
the modulus to obtain a noisy data sample. The standard
deviation of the Gaussian noise is set to be M0/R, where
R is the desired SNR in the unweighted image, which we
vary over the interval [20, 300]. (The SNR values typically
observed in 3D spoiled gradient echo scans from our sys-
tem, with acquisition parameters similar to those detailed
below (see Section 3.2), typically range between 40 and
100 depending on the coil used, resolution, use of parallel
f noise-free simulation with excitation flip angle = 5�, sSAT = 15 ms (duty

T B
2 ½ls� T A

2 ½ms� RA [s�1] RB [s�1] (fixed)

10.0 66.0 1.450 1.0

10.0 80.0 1.447 1.0
10.0 96.1 1.448 1.0

10.0 72.7 1.451 1.0
10.0 46.7 1.451 1.0

10.0 71.0 1.450 1.0
10.0 45.8 1.450 1.0

re also compared obtained when using 2 sets (40 points with the same TR
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imaging, etc.) For each level of noise, we generate 10,000
sets of noisy independent samples and fit the three equa-
tions to each set. Look-up tables are used for the super-
Lorentzian lineshape, the fractional saturation S1A, and
their derivatives, in order to speed up the computation.

3.2. In vivo data

A single subject (female, 34 years old) was scanned twice
on a 1.5 T system (SIGNA Horizon Echospeed, General
Electrics, Milwaukee, WI, USA) using a 3D MT-weighted
fast spoiled gradient recalled-echo (SPGR) sequence [15]
(TR/TE = 28/5.1 ms, Gaussian MT pulses, dura-
tion = 14.6 ms, standard deviation = 2.84 ms, band-
width = 125 Hz, matrix = 256 · 96 · 32, FOV = 240 ·
180 · 160 mm3, to reconstruct twenty-eight 256 by 256
voxel slices). The excitation flip angle was 5� on the first
session and 15� on the second one, the interval between
scans was 7 days. On each occasion a dataset of 20 MT
points was obtained, using 2 MT pulse flip angles (220�
and 820�, corresponding to a CWPE amplitude of 251.1
and 861.2 rad s�1), and 10 values of Df per flip angle. Df

ranged between 400 and 20,000 Hz, and was stepped using
a constant logarithmic interval. In addition to the MT
data, three 3D SPGRs (TR = 13.1 ms, TE = 4.2 ms, same
FOV and resolution as the MT sequence) were also
obtained on each occasion, with three different excitation
flip angles (h = 25�, 15�, 5�) in order to independently esti-
mate the longitudinal relaxation rate of the system, RAobs.
The body coil was used for signal transmission and the
manufacturer’s eight-channel head coil was used for recep-
tion. The total scan time was about 45 min.

The study was approved by the Joint Research Ethics
Committee of The National Hospital for Neurology and
Neurosurgery and the Institute of Neurology, UCL, and
the subject gave written informed consent before taking
part.

3.3. Image analysis

The two datasets (one from each MRI session) were pro-
cessed on a Unix workstation (Sun Microsystems, Moun-
tain View, CA, USA), as described elsewhere [15]. Briefly:
the 20 MT-weighted volumes obtained with the MT-
weighted SPGR sequence and the three volumes obtained
with the non-MT-weighted SPGR sequence were co-regis-
tered to the first MT-weighted volume using a modified
[16] version of Automated Image Registration (AIR, avail-
able at http://air.bmap.ucla.edu:16080/AIR) [17]. RAobs

was estimated on a pixel-by-pixel basis by fitting the theo-
retical SPGR signal equation to the signal in the non-MT-
weighted SPGR images, as a function of the flip angle [18].
The 3 MT signal equations were fitted to the remainder of
the images (as described for the synthetic data) yielding
estimates of the MT parameters. Six bilateral regions of
interest (ROIs), three located in white matter (frontal, tem-
poral and internal capsule) and three in gray matter (thal-
amus, putamen, caudate nucleus) were outlined on the T1-
weighted images obtained from the non-MT-weighted
SPGR scan (flip angle = 25�). The 12 ROI outlines were
then superimposed on the MT parameter maps, yielding
6 (3 signal equations times 2 flip angles) estimates for each
of the following: RMB

0 ; F ; T
B
2 , and T A

2 . Paired sample T-tests
were used to compare the mean estimated parameters
between equation solutions, and two-sample T-tests were
used to test inequalities between flip angles, considering
statistically significant two-tailed p values lower than 0.01.

4. Results

To provide a qualitative description of the accuracy of
the three signal equations, we show in Fig. 1 the MT spec-
tra simulated using Eq. (18) and the test set in Table 1,
together with those simulated using each of the three equa-
tions and the same test set, for two of the cases explored in
Experiment 1 (A: duty cycle = 50%, flip angle = 5�; B: duty
cycle = 17%, flip angle = 5�). All curves are normalized to
the maximum intensity. As expected, the largest deviations
between signal equations are observed at high power, for
small offset frequencies, with Ramani’s equation providing
the least accurate description. The deviation between
Ramani’s predictions and the others are more pronounced
for lower duty cycles (Fig. 1B).

4.1. Duty cycle effect

The estimates of RA;RMB
0 ; F , and T A

2 against duty cycle
are shown in Fig. 2. Results for T B

2 are omitted as the esti-
mates from all signal equations converged to the test set
irrespective of duty cycle. Both of Sled and Pike’s equa-
tions are less sensitive to changes in the duty cycle than
Ramani’s equation (with the exception of T A

2 ), providing
very consistent estimates, except for RMB

0 , for which the
CW variant yields a value closer to that used to create
the simulation. The dependence of Ramani’s on the duty
cycle is non-linear, with estimated values tending towards
a plateau for duty cycles P50%. For Ramani’s equation,
T A

2 and RMB
0 are the parameters most sensitive to duty cycle

changes. Although more stable, the estimates obtained at
larger duty cycles are not necessarily more accurate than
those obtained at the lowest duty cycle simulated (17%).

The same experiment repeated with a different sampling
scheme yielded almost identical results for duty cycles
>17%. For duty cycle = 17%, Sled and Pike’s CW equation
converged to T A

2 ¼ 76:2 ms and RMB
0 ¼ 3:31 s�1, and the

RP variant converged to T A
2 ¼ 75:0 ms and

RMB
0 ¼ 3:93 s�1, while Ramani’s equation produced results

very similar to those obtained with the two-power scheme.

4.2. Saturation effect of the excitation

The MT parameter estimates obtained from noise-free
simulated data at various flip angles are reported in
Fig. 3, again with the exception of T B

2 which is accurately

http://air.bmap.ucla.edu:16080/AIR
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Fig. 1. MT spectra simulated using the Bloch equations and the test set in Table 1, together with those simulated using each of the three signal equations
(filled circles, Ramani; empty squares, Sled and Pike CW; gray diamonds, Sled and Pike RP) and the same test set, for duty cycle = 50%, flip angle = 5�
(A); and duty cycle = 17%, flip angle = 5� (B). All curves are normalized to the maximum intensity.
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Fig. 2. Plot of estimated MT parameters from noise-free simulated data
(60 points) against MT duty cycle (in percentage) using Ramani’s (filled
circles), Sled and Pike’s CW (empty squares) and Sled and Pike’s RP (gray
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determined by fitting all signal equations irrespective of the
excitation flip angle, and therefore is not shown. As the flip
angle (and thus the amount of saturation) increases, the
estimates of the MT parameters based on Ramani’s signal
equation increasingly deviate from the true values. Addi-
tionally, unlike the other parameters, the dependency of
the estimated T A
2 on the amount of saturation does not

appear to be monotonic. Sled and Pike’s RP approxima-
tion provides the most consistent estimates across flip
angles. The CW variant behaves similarly, at least for flip
angles lower or equal to 15�, with increasingly biased
results at higher flip angles.
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We report in Table 1 the estimated MT parameters
obtained by fitting the three equations to the simulated
noise-free 60 point dataset with excitation flip angle of 5�
(minimum saturation effect from the excitation pulse) and
duty cycle �50% (at which point duty cycle effects have
reached a plateau, and the three signal equations seem to
provide consistent estimates). All equations give similar
results (very close to the ‘test set’ of parameters used in cre-
ating the simulation (see Table 1)). The two variants of
Sled and Pike’s solution provide more accurate estimates
than Ramani’s equation for all parameters, with the CW
approximation yielding a more accurate value for RMB

0 ,
and RP approximation yielding a slightly more accurate
value for F (which Ramani’s equation tends to underesti-
mate). For all the signal equations, the largest error is in
the estimation of T A

2 (7.6% of true value for Sled and Pike’s
RP equation, 10.2% of true value for Sled and Pike’s CW
equation, 21.2% of true value for Ramani’s equation).
The results of Experiment 3 (fitting the signal equations
to a combined dataset obtained with differing ‘‘sequences’’,
i.e. different TR, sSAT, and flip angle) are also shown in
Table 1. The estimates of T A

2 appear highly sensitive to
the combination of acquisition parameters, while all other
parameters are not. Interestingly, T A

2 is underestimated
using both of Sled and Pike’s equations when using 2
sequences (and the error becomes larger), while it is gener-
ally overestimated when using a single one.

When using the four-power scheme the main difference
compared to the two-power scheme was in the estimates
of RMB

0 , which were slightly lower for the two variants of
Sled and Pike’s solution (between 2.98 and 3.1 for the
CW and between 3.3 and 3.4 for the RP approximation).

4.3. Sensitivity to noise

Fig. 4 compares the estimates of the MT parameters using
the three signal equations in the presence of noise. Overall,
the estimates obtained from the 60 point noisy dataset using
any of the three signal equations are characterized by similar
precision, although Ramani’s solution seems to provide
slightly more robust results than Sled and Pike’s at SNR
lower than 120 for RMB

0 and T A
2 . The two equations proposed

by Sled and Pike’s provide very similar estimates (with sim-
ilar precision at all SNR levels) for T A

2 and T B
2 . The CW var-

iant provides more accurate values for RMB
0 . The parameter

whose estimate deviates most from its true value is (for all
signal equations) T A

2 , with Ramani’s estimates deviating
more than the others. The standard deviation associated
with this parameter, however, is smaller when using Rama-
ni’s equation, at low SNR. The opposite is true (with the
two variants of Sled and Pike’s formulation giving very sim-
ilar performances) at high SNR.

4.4. In vivo results

The MT parametric maps obtained by fitting all three
equations to the 5� dataset obtained in vivo are character-
ized by similar quality (examples of F maps are shown in
Fig. 5). Fitting the two equations proposed by Sled and
Pike to the 15� dataset was more problematic; in some vox-
els (most commonly in gray matter, and at the boundary
between tissues) the equations gave physically meaningless
parameter estimates, particularly for RMB

0 and T A
2 . It is pos-

sible that this is the result of T1-contrast between tissues
and CSF increasing the sensitivity of partial volume effect
to motion. Fitting of Eq. (17) appeared to be more robust.

Table 2 shows the values (mean and standard deviation)
obtained for each white and gray matter ROI using each
signal equation and both flip angles.

4.4.1. 5� data (between equations)

Although the estimates of F ;RMB
0 and T A

2 obtained with
Ramani’s equation were statistically different (p < 0.001,
providing higher estimates T A

2 and lower estimates of F

and RMB
0 ) than those obtained with either variant of Sled

and Pike’s equations, for all parameters the absolute differ-
ence between Ramani’s and Sled and Pike’s estimates was
always lower or comparable to the between-voxels stan-
dard deviation (within each ROI) (see Table 2). When com-
paring the two solutions proposed by Sled and Pike, none
of the variables differed (p values of 0.02 for RMB

0 , 0.6 for F,
0.32 for T B

2 and 0.47 for T A
2 ).

4.4.2. 15� data (between equations)

Conversely, when comparing the parameters obtained
by fitting different equations to the 15� dataset, the mean
values were all significantly different (p < 0.001), with the
exception of T A

2 obtained using the two variants of Sled
and Pike’s solution (p = 0.09). The largest differences were
in the estimates of F and T A

2 obtained using Ramani’s equa-
tion with respect to both Sled and Pike’s equations. The



Fig. 5. F maps obtained fitting Ramani’s (left), Sled and Pike’s CW (middle), and Sled and Pike’s RP (right) equations to the data collected using a flip
angle of 5�.
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absolute difference between estimates, in this case, were
approximately one order of magnitude larger than the
between-voxel standard deviation (within each ROI) of
the same parameters.

4.4.3. 15� data vs. 5� data

The estimates of T B
2 obtained fitting any of the three

equations to the 5� dataset were significantly different from
those obtained by fitting the same equation to the 15� data-
set (p < 0.001). For Ramani’s equation, the estimates of F

and T A
2 obtained from the 5� dataset were also significantly

different from those obtained from the 15� dataset
(p < 0.001).

5. Discussion

We have shown that the estimates of RMB
0 ; F , and T B

2

obtained by fitting different equations describing the
behavior of the two-pool model under conditions of pulsed
MT to proton density-weighted noise-free simulated data
with an MT duty cycle of approximately 50% (typical of
most in vivo applications) are in good agreement and devi-
ate only slightly from the values used to create the simula-
tions. There are some systematic differences, however, with
Sled and Pike’s equations typically providing more accu-
rate results. Overall, these findings are in line with those
reported by Portnoy and Stanisz [7]. T A

2 is substantially
overestimated when using all signal equations, albeit less
so when using the Sled and Pike’s RP approximation.
The discrepancy between the estimate of this parameter
and the observed T2 of the system has been observed before
[11]. As white matter is known to have multiple free water
T2 components, one of the explanations provided by
researchers is that the T2 measured by spin echo experi-
ments and T A

2 measured by MT experiments represent dif-
ferent weighted averages of multiple water components.
This explanation, however, does not apply to analogous
results obtained in gels [1,11]. Similarly, the results of our
simulations suggest that such a difference could merely
result from the inadequacy of the model to estimate this
parameter. It is unsurprising that, for both simulated and
in vivo data, the largest quantitative difference between
the results obtained when fitting different equations to the
same (low flip angle) data is in the estimation of this
parameter. When the effects of saturation from the excita-
tion pulse are minimized, in fact, the main difference
between Ramani’s and Sled and Pike’s equations is in the
way the MT pulse effect on the liquid pool is modeled. It
is interesting to notice that others have often reported this
parameter to be underestimated [11], and our own in vivo

results are consistent with such observations (Table 2).
However, when fitting the MT signal equations to simu-
lated data, we observed the opposite trend. A possible
explanation for this inconsistency is the sensitivity of
Levenberg–Marquardt fitting to the values used as starting
points: while for synthetic data we can use the real (test set)
numbers, when fitting in vivo data we can only provide a
‘best guess’. In order to compensate for this effect we
repeated Experiments 1 and 2 running the fitting procedure
10 times, each time perturbing the initial guesses (indepen-
dently for each parameter) by a random factor from a
Gaussian distribution with zero mean and standard devia-
tion equal to 10% of the test parameter [19]. We retained
and compared the set of parameters which gave the best
fit out of the 10 trials in each case. This did not affect the
estimates obtained using Sled and Pike’s equations. T A

2

obtained using Ramani’s equation was even larger in this
case, with all other parameters almost unaffected (data
not shown).

An alternative explanation is that we used a larger num-
ber of points for simulations than for the human brain
data. The range and spacing of the sampling points is likely
to affect the results of the fitting [20], and it is interesting to
observe that even in the simulated data, T A

2 is underesti-
mated when using two ‘‘sequences’’ (as recommended by
Sled and Pike [6,11]). Contrary to their observations, how-
ever, the estimates of RMB

0 were virtually unaffected by this
experimental parameter, and therefore our simulation
experiments do not support the need for this type of acqui-
sition. It is not clear why our result in this case should differ



Table 2
Mean MT parameter estimates (standard deviation) obtained in vivo bilaterally in the six regions listed in the text, using each signal equation, for two flip
angles

Flip angle ROI Ramani Sled and Pike CW Sled and Pike RP

RMB
0 F T B

2 T A
2 RMB

0 F T B
2 T A

2 RMB
0 F T B

2 T A
2

5 WM1 R 3.73 0.102 9.4 55.8 3.96 0.111 9.1 42.4 5.06 0.108 10.8 42.5
(0.46) (0.009) (0.6) (5.8) (0.43) (0.010) (0.6) (5.3) (1.27) (0.010) (1.0) (5.1)

L 4.18 0.103 9.5 49.9 4.16 0.114 9.2 37.6 5.83 0.108 10.8 38.2
(0.71) (0.009) (0.5) (6.3) (0.40) (0.008) (0.5) (4.2) (1.49) (0.008) (0.8) (4.3)

WM2 R 2.91 0.100 10.3 56.6 3.15 0.109 10.0 43.2 3.60 0.106 10.6 42.9
(0.29) (0.009) (0.7) (6.9) (0.32) (0.009) (0.7) (6.4) (0.48) (0.009) (0.9) (6.2)

L 3.10 0.087 10.6 59.7 3.42 0.094 10.2 46.4 4.22 0.093 9.3 45.9
(0.62) (0.010) (0.9) (5.5) (0.70) (0.010) (0.9) (6.0) (1.42) (0.011) (1.1) (5.9)

WM3 R 2.75 0.108 10.6 53.0 3.03 0.115 10.2 40.4 3.29 0.115 11.5 39.6
(0.40) (0.014) (0.6) (7.0) (0.39) (0.013) (0.5) (6.3) (0.60) (0.015) (1.4) (6.1)

L 3.35 0.094 11.1 57.8 3.65 0.103 10.8 44.6 4.45 0.100 10.0 44.3
(0.43) (0.008) (0.8) (5.5) (0.49) (0.009) (0.8) (5.6) (0.93) (0.008) (0.8) (5.4)

GM1 R 1.89 0.080 9.6 59.1 2.34 0.083 9.1 46.3 2.31 0.087 8.7 44.6
(0.24) (0.013) (0.7) (6.4) (0.18) (0.013) (0.7) (7.4) (0.34) (0.014) (1.4) (6.7)

L 2.57 0.079 9.6 55.6 2.90 0.086 9.2 41.6 3.42 0.085 8.5 41.3
(0.46) (0.007) (0.9) (4.5) (0.47) (0.008) (0.9) (3.8) (0.92) (0.007) (0.7) (3.5)

GM2 R 1.67 0.057 8.6 65.5 2.12 0.062 8.3 52.7 2.25 0.062 6.3 51.9
(0.23) (0.005) (0.5) (2.4) (0.50) (0.007) (0.4) (4.8) (0.54) (0.006) (0.6) (4.4)

L 1.86 0.056 8.2 64.7 2.33 0.060 7.9 52.5 2.79 0.060 6.0 51.8
(0.37) (0.005) (0.5) (2.2) (0.50) (0.007) (0.5) (4.5) (1.12) (0.006) (0.6) (4.2)

GM3 R 2.04 0.056 8.4 65.5 2.79 0.060 8.0 55.1 2.99 0.061 6.1 53.7
(0.50) (0.011) (0.6) (5.2) (0.53) (0.015) (0.6) (9.3) (0.96) (0.012) (1.2) (7.7)

L 2.05 0.059 8.0 62.9 2.43 0.065 7.7 49.8 5.06 0.064 6.5 49.3
(0.44) (0.011) (0.6) (5.6) (0.42) (0.012) (0.5) (9.5) (1.27) (0.011) (1.1) (8.2)

15 WM1 R 2.53 0.068 12.6 78.0 3.10 0.138 12.1 33.2 3.43 0.135 12.1 33.0
(0.38) (0.004) (1.1) (4.7) (0.32) (0.009) (1.1) (1.7) (0.57) (0.009) (1.1) (1.6)

L 3.07 0.063 12.2 78.7 3.43 0.129 11.7 33.1 3.98 0.125 11.7 33.0
(0.51) (0.005) (0.9) (8.3) (0.37) (0.010) (0.8) (3.0) (0.59) (0.009) (0.9) (3.0)

WM2 R 2.50 0.063 12.4 86.2 3.20 0.130 11.9 34.9 3.62 0.127 11.7 34.7
(0.45) (0.009) (0.6) (15.5) (0.27) (0.015) (0.6) (4.9) (0.37) (0.015) (0.6) (4.8)

L 2.64 0.063 13.4 86.8 2.86 0.129 12.9 35.5 3.16 0.126 12.8 35.2
(0.40) (0.009) (0.9) (12.1) (0.33) (0.016) (0.8) (3.6) (0.44) (0.015) (0.8) (3.6)

WM3 R 2.64 0.061 13.2 89.0 2.97 0.128 12.7 35.7 3.32 0.124 12.7 35.5
(0.45) (0.007) (0.9) (7.8) (0.45) (0.012) (0.8) (2.4) (0.57) (0.012) (0.8) (2.3)

L 2.34 0.068 14.0 100.2 3.03 0.143 13.6 40.8 3.30 0.140 13.6 40.1
(0.40) (0.007) (0.6) (16.6) (0.34) (0.012) (0.5) (6.7) (0.48) (0.012) (0.5) (6.5)

GM1 R 2.98 0.038 10.8 114.5 2.31 0.092 10.3 39.5 2.80 0.087 10.2 39.7
(0.39) (0.002) (0.7) (12.2) (0.29) (0.004) (0.7) (3.2) (0.58) (0.005) (0.7) (3.2)

L 2.83 0.042 12.1 112.1 2.43 0.099 11.6 39.4 2.80 0.095 11.5 39.4
(0.46) (0.003) (0.4) (10.2) (0.31) (0.006) (0.4) (3.2) (0.46) (0.005) (0.4) (3.1)

GM2 R 1.95 0.036 12.7 122.9 1.44 0.087 11.9 41.9 1.57 0.084 11.9 41.9
(0.26) (0.004) (0.7) (10.8) (0.12) (0.008) (0.6) (2.7) (0.12) (0.007) (0.6) (2.7)

L 1.91 0.032 14.9 145.2 1.30 0.078 14.1 49.6 1.41 0.076 13.4 4.0
(0.27 (0.003) (1.2) (12.7) (0.09) (0.006) (1.1) (4.2) (0.20) (0.006) (1.12) (3.3)

GM3 R 2.11 0.027 11.4 160.0 1.32 0.072 11.2 47.1 1.50 0.069 11.2 49.8
(0.59) (0.007) (2.3) (20.1) (0.14) (0.009) (0.9) (5.1) (0.21) (0.009) (1.0) (4.3)

L 2.02 0.036 13.1 142.7 1. 53 0.086 12.6 47.1 1.70 0.084 12.5 47.0
(0.57) (0.005) (1.6) (22.3) (0.50) (0.008) (1.5) (3.2) (0.64) (0.008) (1.5) (5.0)

WM1, frontal; WM2, temporal; WM3, internal capsule; GM1, thalamus; GM2, putamen; GM3, caudate.
RMB

0 is measured in s�1; F is unit less; T B
2 is measured in ls; T A

2 is measure in ms.
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from that of Sled and Pike, but it is possible that this is due
to our use of a different fitting routine. Because of our sim-
ulation results, we chose not to adopt the two-sequence
approach for our in vivo comparison, as this would have
required all the MT-weighted acquisitions to be normalized
to the same maximum value, and also might introduce var-
iable degrees of T1-weightings, which would further violate
the assumptions underlying Ramani’s equation.
Although the reason why T A
2 is so strongly affected by

the use of a dual TR protocol is unclear, it has been
reported by others that even when using more accurate for-
mulations, the estimates of R and T A

2 are highly sensitive to
the choice of data points [7], and this has been explained as
a result of the poor sensitivity of the equations to these
parameters, or to systematic errors between the model
and the data, which can vary with the sampling points.
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The poor sensitivity of the two-pool model to changes in
T A

2 partially explains the robustness of the other parameters
against its misestimation. As T2 can be determined by the
use of alternative techniques, the remaining parameters
are generally of greater interest. We would like to stress,
however, that we are not suggesting the two-pool model
is an exact representation of the distribution of macromo-
lecular pools or of their exchange. We simply report that all
of these relatively simple signal equations appear to be able
to provide consistent and practical information which
might be useful in a clinical/clinical research context.
Although we did not directly compare the sensitivity of dif-
ferent signal equations to changes similar to those caused
by pathology, we have attempted to provide useful guide-
lines to the choice of the most appropriate one for a partic-
ular experimental setting.

Although suggesting optimal sampling schemes is
beyond the scope of this paper, it is clear from Fig. 1 that
low offset frequencies (<1 kHz) should be avoided when
using Ramani’s equation. This is consistent with the set
of points used by Ramani et al. in their original paper
[5], and with the findings of Portnoy and Stanisz [7], and
confirms that in pulsed MT experiments it is difficult to
model the behavior of magnetization at low off-resonance
frequencies. Our results also confirm the observation of
Portnoy and Stanisz [7] that Ramani’s model tends to
underestimate the signal especially close to the Larmor fre-
quency. This deviation at low frequency offsets is likely to
be a consequence of the poor ability of the CWPE approx-
imation to characterize the liquid pool. As noted by Port-
noy and Stanisz [7], the cut-off of 1 kHz they empirically
determined might vary with field strength and MT pulse
amplitude and bandwidth.

We should also note that it is apparent from Figs. 2–4
that F and RA are strongly inversely correlated. This is a
trivial consequence of the typical values of F in the human
brain (of the order of 10�1), for which the denominator on
the right hand side of Eq. (18) is approximately equal to
RMB

0

F , effectively coupling RA and F. This corresponds to con-
ditions of rapid exchange [9].

The use of numerical simulations allows the investiga-
tion of conditions for which it is impractical to acquire
in vivo data, for example very narrow or very long MT
pulses. As expected, and shown by others [7], even in
noise-free condition, the estimates of the MT parameters
provided by Ramani’s signal equation depend on the duty
cycle (in a non-linear fashion), suggesting the need for
pulse sequences with a duty cycle of at least 50%. The esti-
mates obtained using Sled and Pike’s equations, on the
other hand are, with the exception of T A

2 , less sensitive to
this parameter.

We also showed that the degree of T1-weighting (i.e. of
saturation of the excitation) has a large effect on the MT
parameters estimated by fitting Ramani’s equation. This
is a direct consequence of the assumptions underlying it.
We therefore strongly recommend avoiding the use of
Eq. (17) to fit data which deviate substantially from those
assumptions. The two equations proposed by Sled and
Pike, on the other hand, by removing the ‘‘steady state’’
assumption, appear to be less sensitive to this problem.
The RP approximation gives estimates that are substan-
tially insensitive to changes in T1-weighting, while the
CW approximation becomes slightly affected by it for exci-
tation flip angles larger than 14� (assuming a TR = 30 ms).

In this respect, the results obtained from synthetic data
are in keeping with in vivo measurements. Ramani’s equa-
tion’s estimates of F obtained from the more heavily T1-
weighted data (Table 2, flip angle = 15�) are substantially
lower than those obtained with less heavily weighted data,
while estimates of T A

2 are larger. Conversely, when fitting
Sled and Pike’s equations to the 15� dataset, the estimates
of F are slightly larger compared to those from the 5� data-
set, although the difference is not statistically significant. A
surprising finding from in vivo data was that estimates of
T B

2 obtained from all the equations increased slightly with
the excitation flip angle, while this was not observed with
simulated data. This discrepancy between simulated and
real data may be explained by the presence of noise, and
by the use of a smaller number of points for the real data.
Noise in the raw data critically affects the estimation of MT
parameters, as shown by our fourth simulation (Fig. 3).
Monte Carlo simulations also suggest that at high SNR
(P150) Sled and Pike’s estimates (at least of some param-
eters) are at least as precise as (and generally more precise
than) Ramani’s estimates, but that Ramani’s equation pro-
vides more precise answers at lower SNR. We also note
that at low SNR the uncertainty associated with the esti-
mated parameters is much larger than the systematic differ-
ence between the mean parameters estimated by each signal
equation. For comparison of the in vivo results with
simulations, an estimate of the in vivo SNR is needed.
The typical SNR for our system, measured in white matter
on 5�-excitation minimally MT-weighted 3D SPGR images
acquired using a 8-channel head coil and the parameters
described in the paper, ranges (due to non-uniformity of
the receive coil) between 60 and 100 [20]; other systems
are likely to be similar. It would be interesting to compare
the standard deviations obtained by Monte Carlo itera-
tions to the variance lower bound predicted by Cramer–
Rao theory [21], as well as to the standard deviation
obtained from real data using the bootstrap method [22].

A further limitation to this analysis of sensitivity to
noise is in the use of suboptimal schemes for both synthetic
and real data. For all quantitative techniques based on
model fitting, the precision and accuracy of the parameter
estimates depend on the choice of the sampling points, and
we have previously shown [20] that the error in parameter
estimates can be reduced by factors around 2 or 3 by using
optimized sampling schemes. The precision of the estimates
obtained from all three equations could therefore dramat-
ically improve by using a more suitable set of MT points;
we recommend such optimization for practical applica-
tions, but this was not possible here as we needed identical
schemes to allow direct comparison of the three equations.
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Nevertheless, since the schemes here used were likely to be
equally suboptimal for all signal equations (and are similar
to those used by the authors of the original papers), we
believe that our analysis should not have been unduly
‘‘unfair’’ to any of the solutions tested. It should also be
noted, though, that the acquisition protocol reported by
Sled and Pike [6,11] is based on a 60-point scheme to sam-
ple a single 7-mm thick slice. Here, despite the conse-
quences on both scan time and SNR, we use only 20
points (for in vivo experiments) and smaller voxels as, for
most clinical applications, such whole brain coverage and
thinner slices are likely to be essential. Despite reducing
the number of points by two thirds, a scan time of
35 min (required by the protocol we used in vivo) is still
too long to be feasible in a clinical setting. We also esti-
mated five parameters (RMB

0 ; F ; T
B
2 ; T

A
2 and M0) directly

from the fitting, while the original paper by Sled and Pike
[11] recommended the use of an independent estimate of
the relative proton density, which allows the MT curves
to be normalized to one, reducing to four the number of
parameters to be extracted. While this clearly would
improve the precision in the estimated quantities, it also
lengthens the scan time, making it again less attractive
for clinical applications, where the number of acquisitions
is typically restricted by time constraints. A better fit could
be obtained also by iteratively repeating the fitting using
the estimate of M0 obtained from the current iteration as
the starting point for the next. Preliminary results suggest
that two iterations should suffice. Furthermore, simulated
data suggest that when high SNR and a large number of
MT points are available, fitting Sled and Pike’s signal equa-
tions provides more accurate results, and therefore is pref-
erable. Between the two variants, the main differences
seems to be in sensitivity to the degree of T1-weighting in
the acquisition sequence (as a consequence of saturation
from the excitation pulse), suggesting that, in the absence
of this confounding factor, the CW variant can be used
without major disadvantages, given its reduced complexity.
It should be noted, however, that we used a single set of
MT parameters to create the simulations, without any
attempt to explore the consistency of these results for a dif-
ferent type of tissue (e.g. gray matter). Our results, there-
fore, are limited to this specific case until confirmed by
further experiments.

Regarding the in vivo results, it should be noted that we
made no attempt to correct in vivo data for B1 inhomoge-
neities (although the use of the body coil for transmission
should provide a fairly uniform B1 distribution at 1.5 T).
Both the measurements of RAobs, and the MT fitting are
affected by deviations from the nominal flip angle [6,18].
However, we expect the error introduced by B1 inhomoge-
neity to equally affect the three solutions, and therefore not
to have major consequences on the conclusions drawn
from our experiments.

In the present work we have restricted our analysis to
the comparison of three signal equations derived from
the two-pool model to predict signal intensity in pulsed
MT experiments, without any attempt to modify them, or
compensate for their limitations. Several aspects of MT
modeling such as the quantification of the effects of the
excitation pulses on the macromolecular pool, which is typ-
ically considered negligible [2,6], need to be addressed. It
also would be interesting to investigate the dependency of
these 3 equations on other sequence parameters such as
TR, as this quantity controls the efficiency of magnetiza-
tion transfer [23]. This analysis would be complementary
to the investigation of duty cycle effects we performed,
and may confirm whether the relative insensitivity of Sled
and Pike’s CW approximation to duty cycle is maintained
for all pulse sequences.

Furthermore, it would be interesting to explore possible
modifications of Ramani’s equation to account for the
imaging parameters of the pulse sequence (for example
by incorporating an additional contribution of [1-cos(al-
pha)]/TR to the CW saturation rate acting on the free
pool). Finally, providing reliable information about the
optimal number of sampling points and their distribution
would yield an additional element towards the choice of
the most appropriate equation for a given application.
All these areas deserve further investigation, which we
hope to pursue in the future.
6. Conclusion

We have shown that (1) Sled and Pike’s CW signal equa-
tion provides the most accurate estimates of MT parame-
ters in the absence of noise; (2) Ramani’s signal equation
is sensitive to changes in the MT duty cycle, although this
effect becomes stable for duty cycles P50%; (3) Ramani’s
equation is (as expected) not suitable for fitting T1-
weighted data, and doing so leads to underestimates F

and RMB
0 when the amount of T1-weighting is high. An

error, albeit of smaller magnitude, is also introduced into
Sled and Pike’s CW approximation estimates when the
amount of T1-weighting is high. The RP variant is, on
the other hand, extremely robust to this effect; (4) in data
with SNR typical of in vivo protocols, although the esti-
mates of RMB

0 ; F , and T B
2 obtained from the fit of all three

equations show some differences, the magnitude of the dif-
ference is smaller than the between-voxels within-ROI
standard deviation, provided that T1-weighting of the
imaging sequence is minimal; (5) Sled and Pike’s equations
are slightly less robust than Ramani’s one in conditions of
low SNR.
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